首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1283篇
  免费   237篇
  国内免费   58篇
化学   433篇
晶体学   6篇
力学   56篇
综合类   1篇
数学   7篇
物理学   1075篇
  2024年   4篇
  2023年   50篇
  2022年   60篇
  2021年   82篇
  2020年   75篇
  2019年   11篇
  2018年   52篇
  2017年   89篇
  2016年   83篇
  2015年   39篇
  2014年   139篇
  2013年   45篇
  2012年   102篇
  2011年   77篇
  2010年   73篇
  2009年   75篇
  2008年   59篇
  2007年   64篇
  2006年   66篇
  2005年   46篇
  2004年   44篇
  2003年   33篇
  2002年   28篇
  2001年   18篇
  2000年   19篇
  1999年   22篇
  1998年   25篇
  1997年   18篇
  1996年   20篇
  1995年   17篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1578条查询结果,搜索用时 196 毫秒
71.
Bo-Chang Chen 《Applied Acoustics》2008,69(12):1299-1307
Sonar is extensively used in robot as a range sensor and the time-of-flight (TOF) information of ultrasonic echo is frequently adopted in sonar applications. This paper proposes a Jump-U model of ultrasonic echo pattern based on TOF data for a sonar ranging module. The model is established through a data regression method, utilizing TOF data and the relation between the delay time and the bearing angle of the sensor as input parameters. Because the proposed model can explain the jump phenomenon of TOF data and the shape of TOF data is similar to character U, the model is named as Jump-U. Moreover, the model includes several parameters, and one of them is intensity factor which can be regard as a relative strength of ultrasonic echo. Experiments are conducted to verify the proposed model by measuring the echo’s TOF data of a plane with distances ranging from 100 to 200 cm. The results show a close agreement between simulation and measurements.  相似文献   
72.
Ultrasonic emulsification (USE) assisted by cavitation is an effective method to produce emulsion droplets. However, the role of gas bubbles in the USE process still remains unclear. Hence, in the present paper, high-speed camera observations of bubble evolution and emulsion droplets formation in oil and water were used to capture in real-time the emulsification process, while experiments with different gas concentrations were carried out to investigate the effect of gas bubbles on droplet size. The results show that at the interface of oil and water, gas bubbles with a radius larger than the resonance radius collapse and sink into the water phase, inducing (oil–water) blended liquid jets across bubbles to generate oil-in-water-in-oil (O/W/O) and water-in-oil (W/O) droplets in the oil phase and oil-in-water (O/W) droplets in the water phase, respectively. Gas bubbles with a radius smaller than the resonance radius at the interface always move towards the oil phase, accompanied with the generation of water droplets in the oil phase. In the oil phase, gas bubbles, which can attract bubbles nearby the interface, migrate to the interface of oil and water due to acoustic streaming, and generate numerous droplets. As for the gas bubbles in the water phase, those can break neighboring droplets into numerous finer ones during bubble oscillation. With the increase in gas content, more bubbles undergo chaotic oscillation, leading to smaller and more stable emulsion droplets, which explains the beneficial role of gas bubbles in USE. Violently oscillating microbubbles are, therefore, found to be the governing cavitation regime for emulsification process. These results provide new insights to the mechanisms of gas bubbles in oil–water emulsions, which may be useful towards the optimization of USE process in industry.  相似文献   
73.
74.
Suspension culture is an essential large-scale cell culture technique for biopharmaceutical development and regenerative medicine. To transition from monolayer culture on the culture surface of a flask to suspension culture in a bioreactor, a pre-specified cell number must first be reached. During this period of preparation for suspension culture, static suspension culture in a flask is generally performed because the medium volume is not large enough to use a paddle to circulate the medium. However, drawbacks to this static method include cell sedimentation, leading to high cell density near the bottom and resulting in oxygen and nutrient deficiencies. Here, we propose a suspension culture method with acoustic streaming induced by ultrasonic waves in a T-flask to create a more homogeneous distribution of oxygen, nutrients, and waste products during the preparation period preceding large-scale suspension culture in a bioreactor. To demonstrate the performance of the ultrasonic method, Chinese hamster ovary cells were cultured for 72 h. Results showed that, on average, the cell proliferation was improved by 40% compared with the static method. Thus, the culture time required to achieve a 1000-fold increase could be reduced by 32 h (a 14% reduction) compared with the static method. Furthermore, the ultrasonic irradiation did not compromise the metabolic activity of the cells cultured using the ultrasonic method. These results demonstrate the effectiveness of the ultrasonic method for accelerating the transition to large-scale suspension culture.  相似文献   
75.
Protein oxidation leads to covalent modification of structure and deterioration of functional properties of quinoa protein. The objective of this study was to investigate the effects of ultrasonic treatment on the functional and physicochemical properties of quinoa protein oxidation aggregates. In this concern, 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH) was selected as oxidative modification of quinoa protein. The microstructure of quinoa protein displayed by scanning electron microscope (SEM) indicated that oxidation induced extensive aggregation, leading to carbonylation and degradation of sulfhydryl groups. Aggregation induced by oxidation had a negative effect on the solubility, turbidity, emulsifying stability. However, according to the analysis of physicochemical properties, ultrasonic significantly improved the water solubility of quinoa protein. The quinoa protein treated by ultrasonic for 30 min exhibited the best dispersion stability in water, which corresponded to the highest ζ-potential, smallest particle size and most uniform distribution. Based on the FT-IR, SDS-PAGE and surface hydrophobicity analysis, the increase of α-helix, β-turn and surface hydrophobicity caused by cavitation effect appeared to be the main mechanism of quinoa protein solubilization. In addition, the hydrophobic region of the protein was re-buried by excessive ultrasonic treatment, and the protein molecules were reaggregated by disulfide bonds. Microstructural observations further confirmed that ultrasonic treatment effectively inhibited protein aggregation and improved the functional properties of quinoa protein.  相似文献   
76.
In this study, microcapsules were prepared by spray drying and embedding hemp seed oil (HSO) with soy protein isolate (SPI) and maltodextrin (MD) as wall materials. The effect of ultrasonic power on the microstructure and characteristics of the composite emulsion and microcapsules was studied. Studies have shown that ultrasonic power has a significant impact on the stability of composite emulsions. The particle size of the composite emulsion after 450 W ultrasonic treatment was significantly lower than the particle size of the emulsion without the ultrasonic treatment. Through fluorescence microscopy observation, HSO was found to be successfully embedded in the wall materials to form an oil/water (O/W) composite emulsion. The spray-dried microcapsules showed a smooth spherical structure through scanning electron microscopy (SEM), and the particle size was 10.7 μm at 450 W. Fourier transform infrared (FTIR) spectroscopy analysis found that ultrasonic treatment would increase the degree of covalent bonding of the SPI-MD complex to a certain extent, thereby improving the stability and embedding effect of the microcapsules. Finally, oxidation kinetics models of HSO and HSO microcapsules were constructed and verified. The zero-order model of HSO microcapsules was found to have a higher degree of fit; after verification, the model can better reflect the quality changes of HSO microcapsules during storage.  相似文献   
77.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   
78.
Polyacrylonitrile (PAN)/β-cyclodextrin (β-CD) composite nanofibrous membranes immobilized with nano-titanium dioxide (TiO2) and graphene oxide (GO) were prepared by electrospinning and ultrasonic-assisted electrospinning. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) confirmed that TiO2 and GO were more evenly dispersed on the surface and inside of the nanofibers after 45 min of ultrasonic treatment. Adding TiO2 and GO reduced the fiber diameter; the minimum fiber diameter was 84.66 ± 40.58 nm when the mass ratio of TiO2-to-GO was 8:2 (PAN/β-CD nanofibrous membranes was 191.10 ± 45.66 nm). Using the anionic dye methyl orange (MO) and the cationic dye methylene blue (MB) as pollutant models, the photocatalytic activity of the nanofibrous membrane under natural sunlight was evaluated. It was found that PAN/β-CD/TiO2/GO composite nanofibrous membrane with an 8:2 mass ratio of TiO2-to-GO exhibited the best degradation efficiency for the dyes. The degradation efficiency for MB and MO were 93.52 ± 1.83% and 90.92 ± 1.52%, respectively. Meanwhile, the PAN/β-CD/TiO2/GO composite nanofibrous membrane also displayed good antibacterial properties and the degradation efficiency for MB and MO remained above 80% after 3 cycles. In general, the PAN/β-CD/TiO2/GO nanofibrous membrane is eco-friendly, reusable, and has great potential for the removal of dyes from industrial wastewaters.  相似文献   
79.
In this study, the convective heating/cooling process assisted by US irradiation is analyzed with the aims of developing a new convective heat transfer correlation. Heat transfer experiments were conducted with different copper machined geometries (cube, sphere and cylinder), fluid velocities (0.93–5.00 × 10−3 m/s), temperatures (5–60 °C), and US intensities (0–6913 W/m2) using water as heat transfer fluid. The Nusselt (Nu) equation was obtained by assuming an apparent Nu number in the US-assisted process, expressed as the sum of contributions of the forced convection and cavitation-acoustic streaming effects. The Nu equation was validated with two sets of experiments conducted with a mixture of ethylene glycol and water (1:1 V/V) or a CaCl2 aqueous solution (30 g/L) as immersion media, achieving a satisfactory reproduction of experimental data, with mean relative deviations of 17.6 and 17.8%, respectively. In addition, a conduction model with source term and the proposed correlation were applied to the analysis of US-accelerated heating kinetics of dry-cured ham reported in literature. Results demonstrated that US improves heating of ham slices because of the increased heat transfer coefficients and the direct absorption of US power by the foodstuff.  相似文献   
80.
In the preparation of an Al-Ti-C grain refiner under an ultrasonic field, the mechanism of the wetting behaviour between Al and C was systematically investigated. The results demonstrated that the wetting behaviour was mainly dependent on the wetting of the Al melt on graphite under the ultrasonic field (physical wetting) and the formation and mass transfer of TiC (reactive wetting). The diffusion of Ti atoms and their adsorption around the graphite could contribute to the wetting of Al-C. TiC particles were formed under the high temperature caused by the cavitation effect, and they detached from the interface due to the sound pressure, which resulted in consistently sufficient contact on the wetting interface. Moreover, the wetting and spreading behaviour of the Al melt on graphite under an ultrasonic field were numerically simulated, strongly manifesting that the ultrasonic field could facilitate the wetting of the Al-C interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号